
 
www.iaset.us                                                                                                                                                   editor@iaset.us 

 

NUMERICAL COMPUTATIONS FOR THE DESIGN OF ELECTRONIC  MAIL  

BOXES ON CANTOR SET 

AHMED BUSERI ASHINE 

Madda Walabu University, Department of Mathematics, Bale Robe, Ethiopia 

 

ABSTRACT 

This paper extends the algorithm introduced by Error! Reference source not found. By using the Cantor sets 

and cubic spline interpolating function in the design of electronic mail boxes. The cantor sets was introduced as the domain 

of the function for the mail design while spline functions were used as the formula. The password of the mailbox was 

calculated in line with that of cantor set of intervals and spline interpolating functions in respective of the governing 

polynomial function of degree N – 1. The software package termed as MATLAB was in a position to design and calculate 

the intended numerical values. Finally, the Newton-Raphson Method was used for the computational of the password and 

mathematically the interpretations were given. 

KEYWORDS:   Cantor set, spline, Newton-Raphson Method, Electronic Mail Design 

1. INTRODUCTION 

1.1. Background of the Study 

Electronic mail is very important at present in terms of its wide or widely accepted medium of interpersonal 

communication for many years. It have ample amount of applications, especially in transaction of business activities such 

as people’s communication, military activities, academics and others. Many researchers have been working in designing, 

improving, securing, making connections so fast, to benefit the good usage of electronic mail. For instance, [1] addressed 

the impact of electronic direct mail on the design of the messages using Chi square distribution. [2] studied ways of 

combating the corporate paper war: Electronic Mail Abuse paper war and electronic mail abuse. As cited on [3], [4] 

proposed two families of protocols to certify electronic mail with enabling to exchange a receipt extracting the ideas from 

[4] and [1].  [5] examines the research and develop a prototype object-based multimedia electronic mail system based on 

the ideas taken from [4] and [2]. 

Moreover, [3] came with the paper that concerns for designing new proposed algorithm for the design of 

electronic mail. Different mail serves have different mechanisms to control the customers mailing activities by designing 

their own system controlling algorithms. Hence, three ideas were composed in the design, Cantor sets, spline, and Newton-

Raphson’s method. As indicated on [3], Cantor sets have good topological properties represented in bounded, closure, 

compactness, measurable, infiniteness, and countable. So, it was used as the area (or domain) of the design. For the 

smoothness of numerical spline method [6], it issued as a functioning or controlling the design. For fast timer and less 

error, Newton-Raphson’s methods were used for the computation of the approximated roots of the governing interpolating 

polynomial function which was derived from the cubic spline interpolating functions. The user name was served as initial 

as initial point while the roots were used as the password. 
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The Cantor set has many definitions and many different constructions. Although Cantor originally provided a 

purely abstract definition, the most accessible is the Cantor middle-thirds or ternary set construction. Begin with the closed 

real interval [0, 1] and divide it into three equal open intervals. Remove the central open interval 
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Next, subdivide each of these two remaining intervals into three equal open intervals and from each remove the 

central third. Let  be the removed set, 

then 






∪






=
22222 3

8
,

3

7

3

2
,

3

1
I and 




∪




∪




∪




=∪− 1,
3

8

3

7
,

3

6

3

2
,

3

2

3

1
,0)(]1,0[

22222221 II .  

We can then subdivide each of the intervals that comprise  in to three subintervals, removing 

their middle thirds, and continue in the previous manner. The sequence of open sets  is then disjoint, and we traditionally 

define Cantor set C as the closed interval with the union of these  subtracted out. That is, . 

And moreover, the Cantor set C is perfect and totally disconnected, nonempty, closed and nowhere dense, and 

uncountable. Although our construction of the Cantor set in the first section used the typical middle-thirds or ternary rule, 

we can easily generalize this one-dimensional idea to any length other than , excluding of course the degenerate cases of 0 

and 1. 

The studies done by [3] shows as that the Newton-Raphson Method (or simply Newton’s Method) is another so-

called local method to determine the root of an equation or function. This method uses a single starting point (as opposed 

to the bounds required by the bisection method), and repeatedly uses a derivative to project a line to the axis of the root in 

question. 

The Electronic Mail Design 

The Electric Mail Designer focuses on two terms, the (ID) and the password. It is clearly the (ID) is public while 

the password should be top secret. So, suitable mathematics must be used carefully for issue sub-domain for each mail 

which is not related with other mails and it is not possible to insert other domain in the sub-domains series.  

Two producers were introduced, the one, named as (send message) used for putting the message in box mail while the 

second, named as (open mail) used for owner mail. 

When a function f defined on the interval ],[ 0 Nyx  and a set of nodes },...,,{ 10 Nxxx  such that 

bxxxa N == ,...,, 10 . 

A cubic spline interpolating S for  is a function that satisfies the following conditions [3]: 

1. )(xS is a cubic polynomial, denoted )(xS i on subintervals ],[ 1+ii xx for each 1,...,1,0 −N  
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2. )()( 1+= ii xfxS for each .2,....,2,1,0 −= Ni  

3. )()( 111 +++ = iiii xSxS for each .2,....,2,1,0 −= Ni  

4. )(')(' 111 +++ = iiii xSxS for each .2,....,2,1,0 −= Ni  

5. )('')('' 111 +++ = iiii xSxS for each .2,....,2,1,0 −= Ni  

6. )()( 111 +++ = iiii xSxS for each .2,....,2,1,0 −= Ni  

7. One of the following set of boundary conditions is satisfied  

)(''0)('' 0 NxSxS == for free or natural boundary and or each .2,....,2,1,0 −= Ni
 

)('')(' 00 xfxS = and )('')(' NN xfxS = for coupled boundary. 

Remark: To construct the cubic spline interpolating S for the functionf which on the values.  

Let bxxxa N =<<<= ...10  satisfying )('')('' 0 NxSxS =  and 

32 )()()()()( iiiiiiii xxdxxcxxbaxSxS −+−+−+== for 1+≤≤ ii xxx : 

Picard’s Theorem: If ),( yxf and 
y

f

∂
∂

 are both continuous functions on closed rectangleR , then through each 

point ),( 00 yx  in the interior of R, then there exists a unique curve of the equation ),( yxf
y

f =
∂
∂

that passes through it. 

2. DESIGN AND METHODOLOGY 

2.1. Procedure of the Study 

The procedure the researcher used was the producer used by [3] in his paper. In addition to these the following 

procedures were employed. 

Step 1: The interval of Cantor set was selected. 

Step 2: The domain name of one user was selected. 

Step 3: By using MATLAB the domain name was converted into its data set points. 

Step 4: The cubic interpolating Spline function with their respective conditions were defined. 

Step 5: The diagonal coefficient matrix were obtained. 

Step 6: The coefficient were evaluated on their proper interval. 

Step 7: Interpolating polynomial of degree  was obtained. 

Step 8: Using Newton-Raphson method the iteration was done. 
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Step 9: The system’s password was obtained for the chosen domain name. 

3. RESULTS AND DISCUSSIONS 

3.1. Preliminaries 

A polynomial spline of degree  is a function  which 

satisfies the following conditions: 

1. For ],[ 1+∈ ii xxx , )()( xSxS i=  : polynomial of degree . 

2. )1( −mS exists and continuous at the interval points 

i.e  

Definition : A cubic spline is a piecewise defined function that satisfies the following conditions: 

1. )()( xSxS i=  is a cubic polynomial on each sub interval ],[ 1+ii xx  for .1,....,1,0 −= Ni  

2. ii uxS =)( for .1,....,1,0 −= Ni  ( S  have to interpolate all the points) 

3. )('),( xSxS and )('' xS are continuous on  ( S  is smooth). So, we write the  cubic polynomial pieces 

as 32 )()()()( iiiiiiii xxdxxcxxbaxS −+−+−+= , .1,....,1,0 −= Ni where iiii dcba &,,  

represent 4’N unknown coefficients. 

From, cubic polynomial pieces between each data points we have: 

32 )()()()( iiiiiiii xxdxxcxxbaxS −+−+−+= , .1,....,1,0 −= Ni         (1) 

2)(3)(2)(' iiiii xxdxxcbxS −+−+=            (2) 

)(62)('' iii xxdcxS −+=              (3) 

Let ii uxS =)(  for .1,....,1,0 −= Ni  Since ],[ 1+∈ iii xxx          (4) 

)()( iii xSxS =  

)(xSu ii =  

32 )()()( iiiiiiii xxdxxcxxbau −+−+−+=  

ii au =  or each .1,....,1,0 −= Ni             (5) 

From continuous properties of cubic spline method across each interval we have  

)()( iii xSxS =  
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1)( −= ii SxS  

1)( −= iii SxS  

1)( −= iii SxS .1,....,1,0 −= Ni              (6) 

From (5) we have ii aS =  and  

3
11

2
111111 )()()()( −−−−−−−− −+−+−+= iiiiiiii xxdxxcxxbaxS  

So, 3
11

2
11111 )()()( −−−−−−− −+−+−+= iiiiiiii xxdxxcxxbaa   

For .1,....,1,0 −= Ni and 1−−= ii xxh  

3
1

2
111 hdhchbaa iiiii −−−− +++=            (7) 

To make a curve smooth across each interval, the derivative must be equal at the data points. 

i.e )(')(' 1 iiii xSxS −=  

� iii bxS =)('                (8) 

2
111111 )(3)(2)(' −−−−−− −+−+= iiiiii xxdxxcbxS  

2
1

2
11 32 hdhcbb iiii −−− ++= for .1,....,1,0 −= Ni          (9) 

From equation (3) iiii cxxdxS 2)(6)('' +−=  

iii cxS 2)('' = for .1,....,1,0 −= Ni           (10) 

Lastly, since )('' ii xS  has to be continuous across the interval, 

iiiiii cxxdxS 2)(6)('' 11 +−= ++  

iiiiii cxxdxS 2)(6)('' 111 +−= +++           (11) 

And letting ii xxh −= +1 , using the conclusion from (10) and (11): 

iiiiii cxxdxS 2)(6)('' 111 +−= +++  

iii chdc 262 1 +=+             (12) 

The equation can be much simplified by substitutingiM  for )('' ii xS  and expressing the above equation in terms 

of iM and iu . This makes the determination the weights, iiii dcba &,,  a much easier task. Eachic can be represented 

by: 
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iii cxS 2)('' =  => ii cM 2=  =>
2

i
i

M
c =          (13) 

And ia  has already been determined to be ii ua =  

Similarly using equation (12)id  can be written as:  

iii chdc 262 1 +=+  => iii cchd 226 1 −= +  
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From equation (7)ib  can be written as: 

1
32

1 ++ ++++= iiiiii ahdhchbaa  

� 
h

ahdhca
b iiii

i
1

32
++−−−

=  

� )2(
6 1

1
ii

ii
i MM

h

h

uu
b +−

−
= +

+           (15) 

We now have our equation for determining the weight of our  equations: 

ii au = , )2(
6 1

1
ii

ii
i MM

h

h

uu
b +−

−
= +

+  , 
2

i
i

M
c =  and 

h

MM
d ii

6
1 −

= +      (16) 

These systems can be handled more conveniently by putting them in Matrix form as follows  

From (9), 2
1 32 hdhcbb iiii ++=−  for .1,....,1,0 −= Ni  

� iiii bbhchd −=+ −1
2 23

           
(17) 

When we substitute the values of equation (16) into (17) and rearrange the values; we get: 

[ ]21221 2
6

4 ++++ +−=++ iiiiii uuu
h

MMM  , for .1,....,1,0 −= Ni        (18) 

By substitution the values of for i  in to for 1−  , we get: 

[ ]11211 2
6

4 +−+− +−=++ iiiiii uuu
h

MMM for .1,....,1,0 −= Ni        (19) 



Numerical Computations for the Design of Electronic Mail Boxes on Cantor Set                                                                                                      7 

 
www.iaset.us                                                                                                                                                   editor@iaset.us 

Definition 1: The Cantor set C is defined as I nn
C ∩

∞

=
=

1
where 1+nI  is constructed by trisecting nI and 

removing the middle third, 0I  being the closed real interval ]1,0[ . 

Several intersecting properties of the Cantor set are immediately apparent. Since it is defined as the set of points 

not excluded, the “size” of the set can be thought of as the proportion of the interval ]1,0[ removed. If we add up the 

contribution from 
3

2
removed n times find that 1
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 where the geometric sum 

has its well-known solutions. As a result, the proportion remaining “in” the Cantor set is 011 =− , and it can contain no 

intervals of non-zero length. For assume by contradiction it does contain some interval ),( ba . Choose Nn ∈  such that 

ab
n

−<
3

1
. Since the Cantor set is contained in the finite intersection of closed intervals, all of length less than 

)( ab − , we have that this intersection and so C cannot contain ),( ba . 

Theorem 3.1.1: The Cantor set is nonempty. 

Proof: Let consider the interval nI as defined on the above Cantor set definition. Each trisection of nI to from 

1+nI  leaves exactly two end points. For example removing 








3

2
,

3

1
 from ]1,0[  leaves the points 

3

2

3

1
10 == andPP . In 

fact, since the Cantor set is the infinite intersection of each nI  , contains the end points of each subinterval, and is clearly 

non empty. In fact it is infinite. 

Definition 2:  A subset A of a metric space M is nowhere dense if its closure has an empty interior. That is if 

=)int(A Ø. 

Theorem 3.1.2: A Cantor set is closed and nowhere dense. 

We have already seen that C is the intersection of closed sets, which implied that C is itself closed. Furthermore, 

as previously discussed the Cantor set contains no intervals of non-zero length, and so, =)int(C Ø 

Definition 3: A metric space M is totally disconnected if, for any 0>ε  and Mp ∈ there exists a closed subset 

U of M such that )( pMUp ε⊂∈ . That is, there is an arbitrarily small clopen neighborhood centered on every point of 

M. With this definition we can proven two more important facts about the Cantor set. 

Theorem 3.1.3: The cantor set C is perfect and totally disconnected. 

Proof: Fix any 0>ε  and point Cp ∈ . Let Nn ∈ be sufficiently large such that ε<
n3

1
. Then , P is 
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guaranteed to be in one of the intervals (nI  for some Nn ∈ ) that make up C, each of length 
n3

1
, the endpoints of the 

Cantor set in this interval are infinite number and contained in the open interval ),( εε +− pp , so P is a cluster point of 

C, )( pM ε containing an infinite number of points. And since we are considering any Cp ∈ , C is perfect. Furthermore, 

this interval nI  is closed in R and in the Cantor set C as well. Since n
c

n ICI \=  consists of a countable number of 

closed intervals, itself closed. We can then represent C as the disjoint union of two clopen sets, )( nIC ∩ and 

)( c
nIC ∩ , the result being that the Cantor set C is totally disconnected. 

Theorem 3.1.4: Cantor set C is Compact. 

Proof: Each nC  is a finite union of closed sets, so nC  is closed for n∀ . Then, nCC ∩=  is also closed. Also, C 

is bounded since ]1,0[⊆C . So, by Heine-Borel theorem, C is compact. 

Generalization, although our construction of Cantor set used the typical “middle third” or ternary rule, we can easily 

generalize this one dimensional idea to any length other than 
3

1
, excluding of course the degenerate cases of 0 and 1. 

3.1. Main Results 

In this section we are going to treat and compute the actual system based password of g-mail domain name. With 

the wide spreading of the internet and the World Wide Web, our society is becoming more and more dependent on 

communication data which are transmitted over computer networks. A large number of transactions involving a growing 

number of people have been actually replaced by their digital analogues, in which electronic “objects” are exchanged 

among two more parties. An example comes from the diffusion of the electronic mail services which allows users to 

exchange messages containing text or multimedia files. 

Because of its features, such as low cost, rapidity and accessibility the email service is increasingly used in place 

of ordinary mail.  

In many cases, email messages are recognized as recipient’s evidences of online transactions, such as buying 

airlines tickets, or submission of papers in conferences or journals, and so on. However, the user of email poses some 

problems, since in its simplest form the email service does not have many features that are usually required in such cases. 

The standard email service is based on Simple Mail Transfer Protocol and Post Office Protocol, which do not offer 

guarantees on the delivery and the integrity of the messages. Messages are usually stored and transmitted in plain text 

allowing a malicious adversary to tap the connection during the transfer and making him able to access sensible data. 

Now, a day’s most of the mail users are in a position to use mail address from the prominent serves such as 

Gmail, Yahoo, Hotmail, and the like. Gmail server has 6518MB of storage, which allows the users the ability to save their 

own email without worrying that any new emails will not get through because they will reach the allowed limit. 

Now for just comparison, the researcher used mail address or domain names of users of Gmail and Yahoo server. 

The reason why these two servers were selected was that most of the users in the world (about 98% Error! Reference 
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source not found were using these two were sketched through MATLAB by using cubic interpolating spline function 

which was defined on Cantor set.  

For the analysis, the domain name ‘saamhookoo@gmail.com’ was taken and by using MATLAB built in package 

which corresponds each character (twenty of them) of the domain into numbers (twenty corresponding numbers), (i.e ‘s’ is 

represented by ‘115’,’a’ by ‘97’, etc ), which can be written as a vector 

 109] 111 99 46 108 105 97 109 103 64 111 111 107 111 111 104 109 97 97 [115 .  

 
Figure 1 

Example: Design the cubic spline of domain name saamhookoo@gmail.com 

From (19) and equation (1 – 18) the coefficients of the spline interpolating function was calculated by reducing 

the expressions into tri-diagonal. That is, 

]2[
6

4 11211 +−+− +−=++ iiiiii uuu
h

MMM , for 1,...,2,1 −= Ni . 

For 1=i we have the following expressions: ]2[
6

4 20220 uuu
h

MMM ii +−=++  

In a similar fashion one can obtain a 20X20 tri-diagonal matrix for the left hand expression and a column matrix 

say sg i '  for the right hand side expression as follows. Let A be a coefficient matrix for the left hand side expression. 

)2(
6

112 +− +−= iiii uuu
h

g for 18,...,2,1=i          (20) 

And sui '  were calculated directly from the domain name saamhookoo@gmail.com which was transformed into 

vector representation format by using MATLAB 

T
i uuuuU ],...,,[ 1710==

           
(21) 

T]109111994610810597109103641111111071111111041099797115[=  
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  (22)

 

From equation (20) sg i '  for i  = 1, 2,…., 18 , were calculated by using MATLAB and the result were displayed 

as follows in matrix form 

ig = [3.8911e+005 2.5941e+005 -3.6749e+005 2.5941e+005 -1.5132e+005 -8.6469e+004 

1.7294e+005 -8.6469e+004 -1.0160e+006 1.8591e+006 -7.1337e+005 -3.8911e+005  

4.3235e+005 -1.0809e+005 -1.4051e+006 2.4860e+006 -8.8631e+005 -3.0264e+005]T , where i=1,2,⋯18. 

From equation (22) M i ' s were computed by taking the following expression. 

ii gAM ∗= −1 for i=1,2,….,18. So, 1−A is computed and the result was as follows: 
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From equation (16) we have  

,  ,  and  

Before we are going to use Newton-Raphson Method first we have to determine the governing function  that 

agrees with S on the mesh points. Since we have 20 data sets, need a 20x20 matrix. 

Let 19
20

2
321 ...)( xxxxf αααα ++++=          (23) 

From the property of spline function S and its governing function  we have:  

, For all i= 1,2,3, … , 20. Consider the first interval of the Cantor set. (Say) 






=
3

1
,011C . The step size or the discretization length 

60

1

20

0
3

1

1 =
−

=
−

=
N

xx
h N .  

From equation (23) above we have  

115)(...)()()( 19
120

2
131211 =++++= xxxxf αααα  Since 01 =x  

115)0(...)0()0()0( 19
20

2
321 =++++=⇒ ααααf , 

115)0( 1 ==⇒ αf  

For ,2x 19
220

2
232212 )(...)()()( xxxxf αααα ++++=

 , 
.

60

1
2 == hx
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97)(...)()()()( 19
20

2
3212 =++++== hhhhfxf αααα

 

97)2(...)2()2()2()( 19
20

2
3213 =++++== hhhhfxf αααα  

….   …  … … 

109)20(...)20()20()20()( 19
20

2
32120 =++++== hhhhfxf αααα  

So, the coefficient matrix E (say), can be expressed as: 























=

1932

1932

1932

1932

)20(...)20()20()20(

.................

)2(...)2()2()2(

)1(...)1()1()1(

)0(...)0()0()0(

hhhh

hhhh

hhhh

hhhh

E
and























=

20

1

....

3

2

α

α
α
α

α i for 20,...,2,1=i  

Thus, 























=























∗























20

3

2

1

20

3

2

1

1932

1932

1932

1932

......

)20(...)20()20()20(

.................

)2(...)2()2()2(

)1(...)1()1()1(

)0(...)0()0()0(

a

a

a

a

hhhh

hhhh

hhhh

hhhh

α

α
α
α

 























∗























=























⇒

20

3

2

1

1932

1932

1932

1932

20

3

2

1

...

)20(...)20()20()20(

.................

)2(...)2()2()2(

)1(...)1()1()1(

)0(...)0()0()0(

...

a

a

a

a

hhhh

hhhh

hhhh

hhhh

α

α
α
α

        (24) 

From these expressions, we have values of si 'α  and one can also find the inverse of coefficient matrix E-1. So, 

by multiplying E-1 by si 'α we will have the following values. 

T



















=























⇒

023+1.8596e 023+5.5889e- 023+7.7850e 023+6.6706e- 

023+3.9352e 023+1.6951e- 022+5.5171e 022+1.3850e- 021+2.7136e 020+4.1717e- 

? 019+5.0323e 018+4.7388e- 017+3.4465e

016+1.9023e- 014+7.7563e 013+2.2408e- 011+4.2859e 009+4.7923e- 007+2.3224e  115

...

20

3

2

1

α

α
α
α

 

This computation leads us to get the governing function  with their respective conditions as displayed in the 

following lines 

)(xf  = 115 + (6234133056968353 / 268435456)* x1-(2512548999448485 / 524288)* x2+ (1755502906181383 / 

4096)* x3 

- (5736392578750985 / 256)* x4+ (6205046247124737 / 8)* x5- (19023112608783088)* x6 + 

(344651962205307456)* x7 

- (4738841091626776576)* x8 + (50323312017772527616)* x9 - (417172156483298852864)* x10 
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+ (2713558697764479041536)* x11 - (13849897859614441996288)* x12 + (55170702892070133039104)* x13 

- (169511024182191928115200)* x14 + (393524688526126484553728)* x15 - (667058782115569686544384)* 

x16 

+ (778499302591270089654272)* x17 - (558889075366920378646528)* x18 + (185955788415513546194944)* 

x19 

Now, the next step is to use Newton-Raphson Method to approximate the password of the user name 

saamhookoo@gmail.com 

Newton-Raphson method is defined as  

)('

)(

0

0
01 xf

xf
xx −=

                                        (24) 

By putting  

. 109] 111 99 46 108 105 97 109 103 64 111 111 107 111 111 104 109 97 97 115 [  )'( T
0 == T

i sax
 

Since 
T

i sa )'(
is a row matrix, governing function has been written in 

))'(( T
i saf

.  

Then take the first derivatives of 
f

and substitute in equation (23), and iterate the function till the absolute error 

δξ ≤−= appa PP
 and  

,,100.1 6 rorabsoluteer=×= − ξδ  

wordactualpassPa =  , and rdmatepasswotheapproxiPapp =
 

Now the derivatives of  is computed and the result was recorded as follows: 

=)(' xf  (6234133056968353/ 268435456) - (2512548999448485/ 262144)*x +(5266508718544149/ 4096)*x2 

- (5736392578750985/64)*x3 - (31025231235623685/8)*x4 - (114138675652698528)*x5 

+ (2412563735437152192)*x6 - (37910728733014212608)*x7 + (452909808159952748544)*x8 

- (4171721564832988528640)*x9 -(29849145675409269456896)*x10 -(166198774315373303955456)*x11 

+(717219137596911729508352)*x12-(2373154338550686993612800)*x13+ (5902870327891897268305920)*x14 

-(10672940513849114984710144)*x15+(13234488144051591524122624)*x16-(10060003356604566815637504)*x17 

+ (3533159979894757377703936)*x18 

Let  be the successive iterated value of the function up to the range of tolerable error. Then the following are 

the results obtained. 

. 109] 111 99 46 108 105 97 109 103 64 111 111 107 111 111 104 109 97 97 115 [  )'( T
0 == T

i saP
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







−=

)('

)(

0

0
01 Pf

pf
PP

; where P1 is the first iterated value. Since matrix division is not allowed, the iteration was 

done in an element wise manner. Then by continuing this procedure up to the 38th (to have a uniform and consistent 

method for all) iterations we will obtain the best approximated value which is termed as the system’s password. Hence, we 

can design any mail server by this fashion, thus numerical analysis is key for the design. 

4. CONCLUSIONS/DISCUSSIONS 

On this paper, different mail servers such as yahoo.com, and gmail.com were treated to obtain the pattern or the 

similarities and differences among them. After the two servers design were seen the mathematical meaning of electronic 

mail design was analyzed thoroughly. 

For any domain name or email address, we obtain a unique curve that uniquely identifies the user name. No two 

or more mail addresses have the same curve on any mail server. By Picard’s theorem, this curves has a unique solution. 

This unique solution(s) was/were calculated by using Newton-Raphson method for its being fast and easily converges to 

the required solution. 

The sent message have been checked where it is correct or corrupted, and validates the properties of Cantor set in 

line with its topological properties that makes the mail boxes stable. 
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