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ABSTRACT

This paper extends the algorithm introducedBssor! Reference source not found By using the Cantor sets
and cubic spline interpolating function in the dgesof electronic mail boxes. The cantor sets wasdluced as the domain
of the function for the mail design while splinenfiions were used as the formula. The passworthefmailbox was
calculated in line with that of cantor set of iMals and spline interpolating functions in respectof the governing
polynomial function of degree N — 1. The softwaeelage termed as MATLAB was in a position to desigd calculate
the intended numerical values. Finally, the NewRaphson Method was used for the computational @ptssword and

mathematically the interpretations were given.
KEYWORDS: Cantorset, spline, Newton-Raphson Method, Electronic Nbaisign

1. INTRODUCTION
1.1. Background of the Study

Electronic mail is very important at present inmerof its wide or widely accepted medium of integomal
communication for many years. It have ample amaofipplications, especially in transaction of besi activities such
as people’s communication, military activities, @emics and others. Many researchers have beenngoirkidesigning,
improving, securing, making connections so fasheaefit the good usage of electronic mail. Fotanee, [1] addressed
the impact of electronic direct mail on the des@nthe messages using Chi square distributjgh studied ways of
combating the corporate paper war: Electronic Mdiluse paper war and electronic mail abuse. As dted3], [4]
proposed two families of protocols to certify etectic mail with enabling to exchange a receipt asting the ideas from
[4] and [1]. [5] examines the research and develgpototype object-based multimedia electronicl ispstem based on
the ideas taken from [4] and [2].

Moreover, [3] came with the paper that concerns designing new proposed algorithm for the design of
electronic mail. Different mail serves have differenechanisms to control the customers mailingvitiets by designing
their own system controlling algorithms. Henceethideas were composed in the design, Cantorsggitse, and Newton-
Raphson’s method. As indicated on [3], Cantor $etge good topological properties represented imbed, closure,
compactness, measurable, infiniteness, and coent&al, it was used as the area (or domain) of &sigd. For the
smoothness of numerical spline method [6], it islsae a functioning or controlling the design. Fastftimer and less
error, Newton-Raphson’s methods were used for timepaitation of the approximated roots of the govegrinterpolating
polynomial function which was derived from the auBpline interpolating functions. The user name s&xved as initial

as initial point while the roots were used as thssword.
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2 Ahmed Buseri hise

The Cantor set has many definitions and many diffeconstructions. Although Cantor originally pred a

purely abstract definition, the most accessibliaésCantor middle-thirds or ternary set construct®egin with the closed

12
real interval [0, 1] and divide it into three equagien intervals. Remove the central open interya# (5’5) such that
12
[0 -1, =[01] -| . %
' 3’3
Next, subdivide each of these two remaining intisriato three equal open intervals and from eachore the

central third. Let s be the removed set,

=

1 2 7 8 1 2 2 6 7 8
then|2 :(3—2,3—2JD(3—2,?jand[01] _(ll |:| |2):|:0,3—2j| D {?,?jl |:| [3—2,3—2j| D |:? ,]_i|

We can then subdivide each of the intervals thatprise [0, 1] — (I; U ;) in to three subintervals, removing
their middle thirds, and continue in the previousnmer. The sequence of open detss then disjoint, and we traditionally

define Cantor set C as the closed interval withuthien of thesd,, subtracted out. That i€ = [0,1] —U I, .

And moreover, the Cantor set C is perfect and lyottisconnected, nonempty, closed and nowhere demsk

uncountable. Although our construction of the Casgt in the first section used the typical miditigels or ternary rule,

1
we can easily generalize this one-dimensional idemy length other tha{] excluding of course the degenerate cases of 0
and 1.

The studies done by [3] shows as that the NewtgohBan Method (or simply Newton’s Method) is anotber
called local method to determine the root of anagign or function. This method uses a single stgrpoint (as opposed
to the bounds required by the bisection method),rapeatedly uses a derivative to project a linhéoaxis of the root in

guestion.
The Electronic Mail Design

The Electric Mail Designer focuses on two terms, {fD) and the password. It is clearly the (IDpighlic while
the password should be top secret. So, suitableemettics must be used carefully for issue sub-dorfai each mail

which is not related with other mails and it is possible to insert other domain in the sub-domsénies.

Two producers were introduced, the one, named eaxxd (message) used for putting the message in bdxwhite the

second, named as (open mail) used for owner mail.

When a function f defined on the intervdX,,y,] and a set of node§X,,X,,...,Xy} such that

a=Xg,X,...Xy =D.
A cubic spline interpolating S fgf is a function that satisfies the following conalits [3]:

1. S(X)is a cubic polynomial, denot&g (X) on subintervalg X, , X, ] for each01,...,N —1
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2. S(x)= f(x,,)foreach = 012,.....N — 2.

3. S.(X.)=S(X,)foreacti = 012,....,N — 2.

4. S, (X,1) =S, (X,,)foreaci = 012,....,N — 2.

5. S, (X4)=S" (X,,)foreacti = 012,....,N — 2.

6. S, (X.)=S(X,)foreacti = 012,....,N - 2.

7. One of the following set of boundary conditionsadisfied
S"(X,) =0=S"(xy) for free or natural boundary and or edch01,2,....,N — 2.
S'(Xg) = £"(X,)andS'(xy) = f'"(Xy ) for coupled boundary.
Remark: To construct the cubic spline interpolating Stfoe functionf which on the values.
Let a =X, <X <..<Xy = Db satisfyingS"(x,) =S"(Xy) and

S(X)=S(X)=a +b (x-x)+c (x—x)>+d (x—x)%for X X< X,,:
, of : .
Picard’s Theorem If f (X, Yy)and 0_ are both continuous functions on closed rectaRgl¢hen through each
y

of
point(X,, Y, ) in the interior of R, then there exists a uniqueve of the equatiog— = f (X, y) that passes through it.
y

2. DESIGN AND METHODOLOGY
2.1. Procedure of the Study

The procedure the researcher used was the prodsedrby[3] in his paper. In addition to these the follogin
procedures were employed.

Step 1:The interval of Cantor set was selected.

Step 2: The domain name of one user was selected.

Step 3:By using MATLAB the domain nhame was converted iitdadata set points.

Step 4:The cubic interpolating Spline function with thespective conditions were defined.
Step 5:The diagonal coefficient matrix were obtained.

Step 6:The coefficient were evaluated on their propegrivil.

Step 7:Interpolating polynomial of degred — 1 was obtained.

Step 8:Using Newton-Raphson method the iteration was done
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Step 9: The system’s password was obtained for the chdserain name.

3. RESULTS AND DISCUSSIONS

3.1. Preliminaries

A polynomial spline of degren is a functionS(x) fora = x, < x; < - < xy_; < x, = b which

satisfies the following conditions:

1. ForxUO[X;,X.], S(X) =S (X) : polynomial of degree= .

S(m_l) exists and continuous at the interval points

N

elim, - STV () = lim, o+ 577V ()

Definition : A cubic splineS( x)is a piecewise defined function that satisfiesftlewing conditions:
1. S(X) =S (X) is a cubic polynomial on each sub intefugl, X;,,] fori = 01,....,N —1.
2. S(X)=u,fori =01,....,N —1. (S have to interpolate all the points)

3. S(x),S'(x)andS'"(x)are continuous otfa, b] (S is smooth). So, we write thm cubic polynomial pieces
asS (X) =a +b (x-x)+c (x-x)*+d, (x-x%)°, i=0L...,N-Lwhere a,b,c &d,
represent 4'N unknown coefficients.

From, cubic polynomial pieces between each datatpeie have:

S(X)=a +b (x-x)+c (x-%)>+d,(x-x)°%,i=04....N -1 (1)
S(x)=b +2c (x-x) +3d (x-x)? @)
S"(x)=2c, +6d, (x-x) ®3)
Let S (X) =y, fori = 01,....,N —1. Since X, [X;, X;,;] (4)
S(x) =S (x)

u =S (x

U =g +bi(x_xi)+ci(x_xi)2 +di(x_xi)3
u, =@, oreachi = 01....,.N -1 (5)

From continuous properties of cubic spline methowss each interval we have

S(%) =S (%)
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S(x) =S,
S(x)=S,
S(x)=S,i=01...,N-1 (6)

From (5) we hav&, =&, and

SL(¥)=a_ +b_(x=x_)+C_(Xx=x%_)*+d_,(Xx=x%_,)°
Soa =a_, +b (X=x_)+c (Xx=x_)*+d_(x-x_)°
Fori = 0L....,.N —Ll.andh=% - X _;
a =a_, +b_h+c_h*+d _h @)
To make a curve smooth across each interval, thieatiee must be equal at the data points.
eS| (%) =S, (x)

= S'(x)=h (8)
SiL () =b_ +2¢_(Xx=%_)+3d,_,(Xx=%_)?
b =b_ +2c_h*+3d,_h*for i=0L...,.N-1 9)
From equation (3p "' (X) = 6d, (X — X,) + 2c;
S"(x)=2cfori =01.....N -1 (10)
Lastly, sinceS,"'(X;) has to be continuous across the interval,
S" (Xi.q) =6d; (X, — %)+ 2¢,
S" 1 (X,)=6d, (X, —%)+2c (11)
And lettingh = Xi,; — X, using the conclusion from (10) and (11):
Sy (%) = 60, X1y = X,) + 2
2c,,, =6d,h+2c, (12)

The equation can be much simplified by substitubihg for S, (Xi) and expressing the above equation in terms
of M; andu, . This makes the determination the weiglfsp,,C; & d; a much easier task. Eaglcan be represented
by:
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M i
S (%)=2c =>M, =2¢; =>¢, :7 (13)

And a; has already been determined todye= U;

Similarly using equation (121)i can be written as:

2c,,, =6d,h+2c, =>6d.h=2c,, — 2¢,

2 . -2 Z(Mziﬂj_z(wzlij
= d: Ci+1 Ci -
6h 6h
-M.
=>d=—t21 14
> 6h (14)

From equation (7l;1)i can be written as:
a,=a +bh+ch®+dh’+a,,

_-a -ch’-dh®+a,
' h

5 b =tami v, 2m)) (15)

We now have our equation for determining the wedafrdgur N — 1 equations:

i,bizu—h(l\/liﬂ+2Mi),Ci M andd=M (16)
h 6 2 6h

These systems can be handled more convenientlyttipg them in Matrix form as follows

From (9)b._, =b, +2c,h+3d,h?® fori = 01,....,N -
= 3dh*+2ch=b_ -b (17)

When we substitute the values of equation (16) (h#) and rearrange the values; we get:

6
M, +4M , +M,,, = F[u -2u,,, +U,.,] . fori =04.. ,N-1. (18)
By substitution the values of fdri in to for =1 , we get:

M, , +4M, +Mi+1:h—62[ =2, + Uy, ]fori = 04,....N - 1. (19)
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Definition 1: The Cantor set C is defined 43 :ﬂ::1| ., Where | ., is constructed by trisecting, and
removing the middle third] , being the closed real inter@1] .

Several intersecting properties of the Cantor seiramediately apparent. Since it is defined asstteof points
not excluded, the “size” of the set can be thousfhéis the proportion of the intervd01] removed. If we add up the
n

1 2 4 1 .
= 5 + 5 +—+ ——— | =1 where the geometric sum

2 3]
contribution from— removedn times find that E
3 n+l

n=0

1
27 3,_2
3

has its well-known solutions. As a result, the gnmtien remaining “in” the Cantor set 5—1=0, and it can contain no

intervals of non-zero length. For assume by coittiah it does contain some intervéd, b) . Choosen LI N such that

3—n <b-—a. Since the Cantor set is contained in the finiteerisection of closed intervals, all of length lekan

(b —a), we have that this intersection and so C cannatado (&, b) .
Theorem 3.1.1 The Cantor set is nonempty.

Proof: Let consider the intervdl as defined on the above Cantor set definition. Eeshction of | to from
, 12 , 1 2
| ., leaves exactly two end points. For example reng Hél-,g from [01] leaves the point§) = gandPl = 5 In

fact, since the Cantor set is the infinite intetisecof eachl | , contains the end points of each subinterval,iamtearly

non empty. In fact it is infinite.

Definition 2: A subset A of a metric space M is nowhere denses iflosure has an empty interior. That is if
int(A) =g.

Theorem 3.1.2 A Cantor set is closed and nowhere dense.

We have already seen that C is the intersectiariosed sets, which implied that C is itself closedrtthermore,
as previously discussed the Cantor set contairistenvals of non-zero length, and d0t(C) =@

Definition 3: A metric space M is totally disconnected if, fary £ > 0 and p [0 M there exists a closed subset

U of M such thatpJU O M, (p) . That is, there is an arbitrarily small clopengfiorhood centered on every point of

M. With this definition we can proven two more inmfaont facts about the Cantor set.

Theorem 3.1.3 The cantor set C is perfect and totally discotegkc

. . . 1 .
Proof: Fix any € >0 and point pJC. Let n[J N be sufficiently large such that3—n<£. Then , P is
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1
guaranteed to be in one of the intervals for somen U N) that make up C, each of Ieng{é%—, the endpoints of the

Cantor set in this interval are infinite number @oatained in the open interv@p — &, p + £) , so P is a cluster point of

cC, M g(p) containing an infinite number of points. And siree are considering any [1C , C is perfect. Furthermore,

this interval | | is closed in R and in the Cantor set C as welic&il nc =C\ 1, consists of a countable number of

closed intervals, itself closed. We can then represC as the disjoint union of two clopen sef€ N In)and
(C n1,%), the result being that the Cantor set C is totigonnected.
Theorem 3.1.4 Cantor set C is Compact.

Proof: EachC,, is a finite union of closed sets, €3, is closed forl], . Then,C = nC, is also closed. Also, C

is bounded sinc€ [J [0]1] . So, by Heine-Borel theorem, C is compact.

Generalization, although our construction of Cargtet used the typical “middle third” or ternaryeuwe can easily

1
generalize this one dimensional idea to any lengier than:—g, excluding of course the degenerate cases of Q.and

3.1. Main Results

In this section we are going to treat and complugeaictual system based password of g-mail domairen®ith
the wide spreading of the internet and the Worldi&Web, our society is becoming more and more digdnon
communication data which are transmitted over cdampoetworks. A large number of transactions iniajva growing
number of people have been actually replaced biy thgital analogues, in which electronic “objectafe exchanged
among two more parties. An example comes from iffesibn of the electronic mail services which a® users to

exchange messages containing text or multimedia. fil

Because of its features, such as low cost, rapatity accessibility the email service is increasingled in place

of ordinary mail.

In many cases, email messages are recognized ipeengs evidences of online transactions, suchaging
airlines tickets, or submission of papers in cogrfees or journals, and so on. However, the usendil poses some
problems, since in its simplest form the email Bendoes not have many features that are usuajlyined in such cases.
The standard email service is based on Simple Maihsfer Protocol and Post Office Protocol, whiah ribt offer
guarantees on the delivery and the integrity of rifessages. Messages are usually stored and treatsmnitplain text

allowing a malicious adversary to tap the connectiaring the transfer and making him able to acsessible data.

Now, a day’'s most of the mail users are in a pmsito use mail address from the prominent serveb si3
Gmail, Yahoo, Hotmail, and the like. Gmail servest6518MB of storage, which allows the users thityatn save their

own email without worrying that any new emails witit get through because they will reach the altbiirait.

Now for just comparison, the researcher used ndagitess or domain names of users of Gmail and Yaboger.

The reason why these two servers were selectedhatsnost of the users in the world (about 9B#or! Reference
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Numerical Computations for the Design of ElectronidVail Boxes on Cantor Set 9

source not foundwere using these two were sketched through MATU#Busing cubic interpolating spline function

which was defined on Cantor set.

For the analysis, the domain narsaamhookoo@gmail.cdrmvas taken and by using MATLAB built in package

which corresponds each character (twenty of thentf)e@domain into numbers (twenty corresponding Ipewrs), (i.e ‘s’ is

represented by ‘115’,'a’ by ‘97, etc ), which cha written as a vector

[115 9797109104111111107111111 64103109 97105108 4699111109] .

The gaph of saamhookoo@gmail.com

saamhookoo@gmail.com

40 i i i i i i i
o 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Cantor Set on C11

Figure 1

Example: Design the cubic spline of domain naggamhookoo@gmail.com

From (19) and equation (1 — 18) the coefficientshef spline interpolating function was calculatgdréducing

the expressions into tri-diagonal. That is,

M, +4M, + M, :h_62[ui—1_2ui +Uu,,], fori=12,...,N-1.

. 6
For i =1we have the following expressionM , + 4M, + M, ZF[UO—Zui +U,]

In a similar fashion one can obtain a 20X20 trigthaal matrix for the left hand expression and aicwi matrix

say ;'S for the right hand side expression as follows. Adte a coefficient matrix for the left hand sidgeession.

g =h—62(ui-r2Ui +u,,)fori =12,...18 (20)

And U;'S were calculated directly from the domain nasaamhookoo@gmail.comhich was transformed into

vector representation format by using MATLAB
— — T
U =u, =[ug,u,,...,u;] (21)

=[l15 97 97 109 104 111 111 107 111 111 64 103 109 97 105 108 46 99 111 109"
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Fori=01,....17

[1 41 00 00 0O0O0O0OOOOUOT OO [M] [g]
0141000000O0O0O0O0O0UO0TGO0 O |M, g,
00141000000O0O0O0O0UO00O0 0| |M, g,
0001 410000O0O0O0O0UO0UO00O0 0 |M, g,
000O01410000O0O0O0O0UO00O0O0|M, s
000O0O0OT1M41000O0O0O0UO0TGO0TO0 0 |M, o
000O0O0OOT1M41000O0O0UO0TU OO0 0 |M, g,
000O0O0OOOT141000O0UO0TGO0TQ 0O |M, Os
OOOOOOOOl4lOOOOOOODM8_g9
000O0O0OOOOOT11I41000T00O0 0O |M, 010
000O0O0OOOOOOT11I410000 0 My Oy
000O0O0OOOOOOOT11I40000O0 0 [M, O
000O0O0OOOOOOOOT114100 0f My, 05
000O0O0OOOOOOOOOT1410 0f |Mg, O
000O0O0OOOOOOOOOOZ141 0| |M, Ors
000O0OOOUOUOOOOOOO1 4 1| |Mg, 016
0 00O0OOUOUOUOUOOOO OO OO OO0 1 4 |Mg Oy
/0000 0OO0O0OOO®OOOO0OUO OO OO0 1] |[Mjy| |0 22)

From equation (20); 'S for I =1,2,...., 18, were calculated by using MATLABdathe result were displayed

as follows in matrix form
0; = [3.8911e+005 2.5941e+005 -3.6749e+005 2.5941e+N6%32e+005 -8.6469e+004

1.7294e+005 -8.6469e+004 -1.0160e+006 1.8591e+00837e+005 -3.8911e+005
4.3235e+005 -1.0809e+005 -1.4051e+006 2.4860e-@68631e+005 -3.0264e+005]where i=1,2;-18.

From equation (22) M i ' s were computed by takimgfollowing expression.

M, = A™ g, for i=1,2,....,18. So,A™"is computed and the result was as follows:
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D.0000 00000 00000 -0.0000 00000 00000 00000 -DO0DDD 00000 00002 0ODDS 00021 0.00TR D004 (L1096 D.40BD 15250 -5.6046
0 0.0000 0.0000 O0.0000 -0.0000 O.0000 00000 00000 00000 O0.0000 00002 O0.0006 00021 O0.0070 00204 01006 -D.40BD 1.5250
[1] 0 0.0000 0.0000 00000 00000 O0.0000 00000 0.0000 -0.0000 O0.0000 00002 00006 0.0021 0.0070 00204 01086 04080
[1] [1] 0 0.000 0.0000 00000 0.0000 0.0000 0.0000 0.0000 0.0000 O0.0000 0.0002 00006 0.0021 0.0070 00204 Q.10D6
[1] [1] [1] 0 0.0000 0.0000 00000 00000 0.0000 0.0000 0.0000 00000 0.0000 0.0002 00006 0.0021 0.00T0 00204
[1] [1] [1] [1] 0 0.0000 0.0000 00000 00000 0.0000 0.0000 00000 00000 0.0000 0.0002 00006 00021 0.00TD
[1] [1] [1] [1] [1] 0 0000 00000 -0.0000 O.0000 0000 00000 00000 00000 00000 OO0 00006 00021
[1] [1] [1] [1] [1] [1] 0 0.0000 00000 -0.0000 00000 00000 00000 00000 Q.O0DRD 00000 00002 0.0DDE
§l=109 +000* ] ] ] ] ] ] ] 0 0.0000 00000 O0.0000 00000 00000 00000 00000 0.0000  -D.0002
L] 0 0 0 0 0 0 o 0 0 00000 -0.0000 O.0000 00000 0.ODMD -0.0000 D000 0.0000
L] 0 0 0 0 0 0 0 1] 1] 0 00000 00000 O0.0000 00000 OO0000 O0.0000 -0.0000
0 [1] [1] [1] [1] [1] [1] [1] 1] 1] 1] 0 00000 -0.0000 O0.0000 -0.0000 -D.O0DD 0.0000
0 [1] [1] [1] [1] [1] [1] [1] 1] 1] 1] 1] 0 00000 -0.0000 O0.0000 O0.0000 -0.0D0D
0 [1] [1] [1] [1] [1] [1] [1] L] L] L] L] L] 0 00000 0.0000 0.0000 0.0000
0 [1] [1] [1] [1] [1] [1] [1] L] L] L] L] L] L] 0 00000 00000 0.0000
0 [1] [1] [1] [1] [1] [1] [1] L] L] L] L] L] L] L] 0 00000 00000
[1] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] 0 0.0000
From equation (16) we have
M;

S i =M = M mM;
i i by _T_E(MHl —2M;) ¢ = S andd; = .

Before we are going to use Newton-Raphson Methad fie have to determine the governing functfothat

agrees with S on the mesh points. Since we hawa0sets, need a 20x20 matrix.
Let f(X)=a, + @, X+ aX° + ...+ q, X" (23)
From the property of spline function S and its goueg functionf we have:

flx.)=15(x,)=5.(x,), For all i= 1,2,3, ... , 20. Consider the first il of the Cantor set. (Say)

1
~-0

"% _3 _1
2C 60

1
C,= O,§ . The step size or the discretization len{te

From equation (23) above we have

f(x)=a, +a,(X) +as(X)* +...+ qp (%) =115 Sincex, =0
= f0)=a,+a,0)+a,(0)*+...+a,,(0)* =115,

= f(0)=a, =115

For Xy, f(%,) =a; +a,(%,) + a5(%,)* + ..+ 0y (%)™ Xa =h=i-
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f(x)=f(h)=a,+a,(h) +a,(h)® +..+ a,(h)* =97

f(x,) = f(2h) =a, +a,(2h) + a,(2h)* + ...+ a,, (2h)** =97

f(Xy) = f (20h) = a, + a, (20h) + a, (20h)® +...+ a,, (20n)* =109

So, the coefficient matrix E (say), can be expreésse

_ _ al ]
©Oh)  (Oh)?  (Oh)? (Oh)* a2
@ @) @) (Wh)® _ _
E=| oh)  @h? @ (2h) anda, =| a3 |for i =12,...20
i (20n) (20h)2 (20h)3 (20h)19_ _0’ 20
[ (oh) (©h? (Oh) o] [a,] [a
| @@ @y wm® | |a,| |a
S @) @y @h® |0 a, |=| a,
| (20h)  (20n)2  (20n)° @0n)* | || |2
a; (Oh) ©Oh?  (oh)® (Oh)** a
a, @n) (h)? (h)® (n)* a, (24)
=>|a; |=| (2h) (2h)?  (2n)® (2h)** |0 a,
Ty (2'('3'h) (2(.3.5)2 (2.(55.)3 (2(;1.)19 Ay

From these expressions, we have valueg’pfs and one can also find the inverse of coefficieatrin E*. So,

by multiplying E* bya,"'swe will have the following values.

Q.
! 1152.3224e+007- 4.7923e+0094.2859e+011- 2.2408e+0137.7563e+014-1.9023e+016]"

a
a'z 3.4465e+017- 4.7388e+0185.0323e+019?
= =
8 -4,1717e+0202.7136e+021-1.3850e+0225.5171e+022-1.6951e+0233.9352e+023
o -6.6706e+0237.7850e+023- 5.5889e+0231.8596e+023
20

This computation leads us to get the governing tfancf with their respective conditions as displayedha t

following lines

f(x) =115 + (6234133056968353 / 268435456)(2512548999448485 | 524288)*x(1755502906181383 /
4096)* ¥

- (5736392578750985 | 256)* ‘X (6205046247124737 [/ 8)* °x (19023112608783088)* °x +
(344651962205307456)* x

- (4738841091626776576)% » (50323312017772527616)* x(417172156483298852864)*
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+ (2713558697764479041536)*% (13849897859614441996288)%x (55170702892070133039104)¥x

- (169511024182191928115200)* % (393524688526126484553728)*° % (667058782115569686544384)*
16

+ (778499302591270089654272)* x (558889075366920378646528)* % (185955788415513546194944)*
19

Now, the next step is to use Newton-Raphson Mettmdapproximate the password of the user name

saamhookoo@gmail.com

Newton-Raphson method is defined as

f(%o)

PR (%) (24)
By putting
X, = (& 'S)T = [115 9797109104111111107111111 64103109 97105108 4699].121_1.09]T .
1 T 1o\ T
Since( ') is a row matrix, governing function has been wnittie f(a's)’) .

Then take the first derivatives off and substitute in equation (23), and iterate timetfon till the absolute error

£=|P, ~P,|<d,

nd

0=10x107°, & = absoluteerror,

P, = actualpassword and P, = theapproximatepassword

Now the derivatives of (x) is computed and the result was recorded as follows

f'(X) = (6234133056968353/ 268435456) - (2512548999448 44)*x +(5266508718544149/ 4096)*x

- (5736392578750985/64)*x (31025231235623685/8)*x (114138675652698528)*x

+ (2412563735437152192)*x (37910728733014212608)*x7 + (4529098081599527485°

- (417172156483298852864029849145675409269456896*%(166198774315373303955456§*x
+(717219137596911729508352)*2373154338550686993612800)* (5902870327891897268305920)*x
-(10672940513849114984710144)%(13234488144051591524122624)%10060003356604566815637504)*x

+(3533159979894757377703936Y*x

Let P, 's be the successive iterated value of the functipiotthe range of tolerable error. Then the follogvare

the results obtained.

P, =(a's)" = [115 9797109104111111107111111 64103109 97105108 4699111109]" .
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f(Py)
17700 _( f -(po) ; where R is the first iterated value. Since matrix divisismot allowed, the iteration was

done in an element wise manner. Then by contintfiig) procedure up to the 8gto have a uniform and consistent
method for all) iterations we will obtain the begtproximated value which is termed as the syst@assword. Hence, we

can design any mail server by this fashion, thuserical analysis is key for the design.
4. CONCLUSIONS/DISCUSSIONS

On this paper, different mail servers such as yatwwo, and gmail.com were treated to obtain theepatbr the
similarities and differences among them. After tve servers design were seen the mathematical mgarielectronic

mail design was analyzed thoroughly.

For any domain name or email address, we obtaimiue curve that uniquely identifies the user naiNe two
or more mail addresses have the same curve on ailysenver. By Picard’s theorem, this curves hamigue solution.
This unique solution(s) was/were calculated by gisilewton-Raphson method for its being fast andiyeasnverges to

the required solution.

The sent message have been checked where it ectorrcorrupted, and validates the propertiesanft@r set in

line with its topological properties that makes thail boxes stable.
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